Motivation, Temperament, Personality and Well-Being as Predicting Propensity Factors for Mathematical Abilities of Adults
The role of motivation, temperament, personality and well-being as predicting propensity factors for mathematical abilities was investigated in 30 adu.
- Pub. date: June 15, 2021
- Pages: 1-12
- 635 Downloads
- 896 Views
- 0 Citations
The role of motivation, temperament, personality and well-being as predicting propensity factors for mathematical abilities was investigated in 30 adults. By embedding these predictors in the Opportunity-Propensity framework, this study aimed to reveal their unique contribution in math development, which is important to improve mathematics education. To our knowledge, the present study is the first to combine predictors and find evidence for the importance of some non-cognitive and socio-emotional propensity factors for mathematical performance by using primary data. Results indicated significant interrelations between the propensities, pleading to integrate them in math research. Furthermore, the relationship propensities and mathematics was dependent on the specific investigated math task, which is in line with the componential nature of mathematics. Negative Affect was the best prediction of accuracy (lower levels of subjective well-being associated with lower levels of mathematical accuracy) whereas Intrinsic Motivation was the best predictor for fact retrieval speed. Limitations and implications for future research are described.
Keywords: Mathematics, motivation, temperament, personality, well-being.
0
References
Baten, E., & Desoete, A. (2018). Mathematical (dis)abilities within the opportunity-propensity model: The choice of math test matters. Frontiers in Psychology, 9, 667. https://doi.org/10.3389/fpsyg.2018.00667
Baten, E., Vansteenkiste, M., De Muynck, G., De Poortere, E., & Desoete, A. (2020). How can the blow of math difficulty on elementary school children’s motivational, cognitive and affective experiences be dampened? The critical role of autonomy-supportive instructions. Journal of Educational Psychology, 112(8), 1490–1505. https://doi.org/ 10.1037/edu0000444
Beck, I., Smits, D. J. M., Claes, L., Vandereycken, W., & Bijttebier, P. (2009). Psychometric evaluation of the behavioral inhibition/behavioral activation system scales and the sensitivity to punishment and sensitivity to reward questionnaire in a sample of eating disordered patients. Personality and Individual Differences, 47(5), 407–412. https://doi.org/10.1016/j.paid.2009.04.007
Bratko, D., Chamorro-Premuzic, T., & Saks, Z. (2006). Personality and school performance: Incremental validity of self-and peer-ratings over intelligence. Personality and Individual Differences, 41(1), 131–142. https://doi.org/10.1016/j.paid.2005.12.015
Bryant, D. P., Bryant, B. R., & Pfannenstiel, K. H. (2015). Mathematics interventions : Translating research into practice (Introduction to special issue). Intervention in School and Clinic, 50(5), 255–256. https://doi.org/10.1177/1053451214560893
Byrnes, J. P., & Miller, D. C. (2007). The relative importance of predictors of math and science achievement : An opportunity – propensity analysis. Contemporary Educational Psychology, 32(4), 599-629. https://doi.org/10.1016/j.cedpsych.2006.09.002
Byrnes, J. P., & Wasik, B. A. (2009). Factors predictive of mathematics achievement in kindergarten, first and third grades: An opportunity-propensity analysis. Contemporary Educational Psychology, 34(2), 167-183. https://doi.org/10.1016/j.cedpsych.2009.01.002
Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2) 319–333.
Claessens, A., Duncan, G., & Engel, M. (2009). Kindergarten skills and fifth-grade achievement: Evidence from the ECLS-K. Economics of Education Review, 28(4), 415–427. https://doi.org/10.1016/j.econedurev.2008.09.003
Costa, P. T. J., & McCrae, R. R. (1992). Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) professional manual. Psychological Assessment Resources, Inc.
De Corte, K., Buysse, A., Verhofstadt, L. L., Roeyers, H., Ponnet, K., & Davis, M. H. (2007). Measuring empathic tendencies: reliability and validity of the Dutch version of the interpersonal reactivity index. Belgian Psychologists/ Psychologica Belgica, 47(4), 235-260. https://doi.org/10.5334/pb-47-4-235
de Vos, T. (2002). Tempo test rekenen (TTR) [Aritmetic speed test (AST)]. Harcourt.
De Weerdt, F., Desoete, A., & Roeyers, H. (2013). WM in Children with RD and/or MD Working Memory in Children with Reading Disabilities and/or Mathematical Disabilities. Journal of Learning Disabilities, 46(5), 461–72. https://doi.org/10.1177/0022219412455238
Deary, I. J., Whalley, L. J., Lemmon, H., Crawford, J. R., & Starr, J. M. (2000). The stability of individual differences in mental ability from childhood to old age: Follow-up of the 1932 Scottish mental survey. Intelligence, 28(1), 49–55. https://doi.org/10.1016/S0160-2896(99)00031-8
Deci, E. L., Conell, J., & Ryan, R. (1989). Self Determination in a Work Organization. Journal of Applied Psychology, 74(4), 580–590. https://doi.org/10.1037/0021-9010.74.4.580
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer. https://doi.org/10.1007/978-1-4899-2271-7
Desoete, A. (2008). Co-morbidity in mathematical learning disabilities: Rule or exception? The Open Rehabilitation Journal, 1(1), 15–26. https://doi.org/10.2174/1874943700801010015
Desoete, A., Baten, E., Vercaemst, V., De Busschere, A., Baudonck, M., & Vanhaeke, J. (2019). Metacognition and motivation as predictors for mathematics performance of Belgian elementary school children. ZDM Mathematics Education, 51(4), 667–677 https://doi.org/10.1007/s11858-018-01020-w
Desoete, A., & Roeyers, H. (2002). Cognitieve deelvaardigheden rekenen [Cognitive subskills of arithmetic]. Vlaamse Vereniging voor Logopedisten/ Flemish speech therapists.
Desoete, A., & Roeyers, H. (2005). Cognitive skills in mathematical problem solving in Grade 3. British Journal of Educational Psychology, 75(1), 119–138. https://doi.org/10.1348/000709904X22287
Diener, E. (1984). Subjective Well-Being. Psychological Bulletin, 95(3), 542–575. https://doi.org/10.1037/0033-2909.95.3.542
Disabato, D. J., Goodman, F. R., Kashdan, T. B., Short, J. L., & Jarden, A. (2016). Different types of well-being? A cross-cultural examination of hedonic and eudemonic well-being. Psychological Assessment, 28(5), 471–482. https://doi.org/10.1037/pas0000209
Dix, A., & van der Meer, E. (2015). Arithmetic and algebraic problem solving and resource allocation: The distinct impact of fluid and numerical intelligence. Psychophysiology, 52(4), 544–554. https://doi.org/10.1111/psyp.12367
Dowker, A. (2019). Individual differences in arithmetic: Implications for psychology, neuroscience and education (2nd ed.). Psychology Press.
Dowker, A., De Smedt, B., & Desoete, A. (2019). Editorial: Individual differences in arithmetical development. Frontiers in Psychology, 10, 2–13. https://doi.org/10.3389/fpsyg.2019.02672
Engelen, U., De Peuter, S., Victoir, A., Van Diest, I., & Van den Bergh, O. (2006). Further validation of the positive and negative affect schedule (PANAS) and comparison of two Dutch versions. Behavior and Health/ Gedrag en Gezondheid, 34(2), 89–102.
Franken, I. H. A. (2002). Behavioral approach system (BAS) sensitivity predicts alcohol craving. Personality and Individual Differences, 32(2), 1–4. https://doi.org/10.1016/S0191-8869(01)00030-7
Franken, I. H. A., Muris, P., & Rassin, E. (2005). Psychometric properties of the Dutch BIS/BAS Scales. Journal of Psychopathology and Behavioral Assessment, 27(1), 25–30. https://doi.org/10.1007/s10862-005-3262-2
Fritz, A., Haase, V. G., & Räsänen, P. (Eds.) (2021). International handbook of mathematical learning difficulties: From the laboratory to the classroom. Springer.
Gagné, M., & Deci, E. L. (2005). Self-Determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331–362. https://doi.org/10.1002/job.322
Gray, J. A. (1981). A critique of Eysenck’s theory of personality. In H. J. Eysenck (Ed.), A model for personality (pp. 246–276). Springer.
Grigorenko, E. L., Compton, D. L., Fuchs, L. S., Wagner, R. K., Willcutt, E. G., & Fletcher, J. M. (2020). Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice. American Psychologist, 75(1), 37-51. https://doi.org/10.1037/amp0000452
Grolnick, W. S., Ryan, R. M., & Deci, E. L. (1991). Inner resources for school achievement: motivational mediators of children’s perceptions of their parents. Journal of Educational Psychology, 83(4), 508–517. https://doi.org/10.1037/0022-0663.83.4.508
Hoekstra, H. A., Ormel, J., & De Fruyt, F. (1996). NEO persoonlijkheidsvragenlijsten: NEO-PI-R: NEO-FFI [NEO personality questionnaires: NEO-PI-R:NEO-FFI]. Swets Test Services (STS).
Janus, M., & Offord, D. R. (2007). Development and psychometric properties of the early development instrument (EDI): A measure of children’s school readiness. Canadian Journal of Behavioural Science, 39(1), 1–22. https://doi.org/10.1037/cjbs2007001
Keyes, C. L. M., & Annas, J. (2009). Feeling good and functioning well: distinctive concepts in ancient philosophy and contemporary science. The Journal of Positive Psychology, 4(3), 197–201. https://doi.org/10.1080/17439760902844228
Kwantes, P. J., Derbentseva, N., Lam, Q., Vartanian, O., & Marmurek, H. (2016). Assessing the big five personality traits with latent semantic analysis (Technical report). Defence Research and Development Canada. https://apps.dtic.mil/sti/citations/AD1004004
Lu, L., Weber, H. S., Spinath, F. M., & Shi, J. (2011). Predicting school achievement from cognitive and non-cognitive variables in a Chinese sample of elementary school children. Intelligence, 39(2–3), 130–140. https://doi.org/10.1016/j.intell.2011.02.002
McClelland, G. H., Lynch, J. G., Irwin, J. R., Spiller, S. A., & Fitzsimons, G. J. (2015). Median splits, Type II errors, and false-positive consumer psychology: Don’t fight the power. Journal of Consumer Psychology, 25(4), 679-689 https://doi.org/10.1016/j.jcps.2015.05.006
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28(3), 285–305. https://doi.org/10.1016/j.neubiorev.2004.03.005
Mervielde, I., De Clercq, B., De Fruyt, F., & Van Leeuwen, K. (2005). Temperament, personality, and developmental psychopathology as childhood antecedents of personality disorders. Journal of Personality Disorders, 19(2), 171–201. https://doi.org/10.1521/pedi.19.2.171.62627
Morsanyi, K., van Bers, B. M. C. W., McCormack, T., & McGourty, J. (2018). The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school-age children. British Journal of Psychology, 109(4), 917–940. https://doi.org./10.1111/bjop.12322
Oishi, S., Diener, E., & Lucas, R. E. (2007). The optimum level of well-being: Can people be too happy? Perspectives on Psychological Science, 2(4), 346–360. https://doi.org/10.1111/j.1745-6916.2007.00048.x
Orsini, C., Evans, P., & Jerez, O. (2015). How to encourage intrinsic motivation in the clinical teaching environment? A systematic review from the self-determination theory. Journal of Educational Evaluation for Health Professions, 12(8), 1-10. https://doi.org/10.3352/jeehp.2015.12.8
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91–105. https://doi.org/10.1207/S15326985EP3702_4
Pickering, A., & Corr, P. (2008). J.A. Gray’s reinforcement sensitivity theory (RST) of personality. In G. J. Boyle, G. Matthews, & D. H. Saklofske (Eds.), The Sage Handbook of Personality Theory and Assessment (pp. 239–256). SAGE Publishing.
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/0021-9010.88.5.879
Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63(1), 539-569. https://doi.org/10.1146/annurev-psych-120710-100452
Poropat, A. E. (2009). A meta-analysis of the five-factor model of personality and academic performance. Psychological Bulletin, 135(2), 322–338 https://doi.org/10.1037/a0014996
Praet, M., Titeca, D., Ceulemans, A., & Desoete, A. (2013). Language in the prediction of arithmetics in kindergarten and grade 1. Learning and Individual Differences, 27, 90–96. https://doi.org/10.1016/j.lindif.2013.07.003
Raven, J. C., Court, J. H., & Raven, J. (1996). Handbook of the Matrices Progressives Tests: Pearson
Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138(2), 353–387. https://doi.org/10.1037/a0026838
Rothbart, M. K., Ahadi, S. A., & Evans, D. E. (2000). Temperament and personality: origins and outcomes. Journal of Personality and Social Psychology, 78(1), 122–35. https://doi.org/10.1037//0022-3514.78.1.122
Ryan, R. M., & Deci, E. L. (2017). Self-determination theory. Basic psychological needs in motivation, development and wellness. Guilford Press.
Shin, M., & Bryant, D. P. (2015). A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities. Journal of Learning Disabilities, 48(1), 96-112. https://doi.org/10.1177/0022219413508324 E
Smits, D. J. M., & Boeck, P. D. (2006). From BIS/BAS to the big five. European Journal of Personality, 20(4), 255–270. https://doi.org/10.1002/per.583
Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value. Intelligence, 34(4), 363–374. https://doi.org/10.1016/j.intell.2005.11.004
Stock, P., Desoete, A., & Roeyers, H. (2010). Detecting children with arithmetic disabilities from kindergarten: evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. Journal of Learning Disabilities, 43(3), 250–268. https://doi.org/10.1177/0022219409345011
Taylor, G., Jungert, T., Mageau, G. A., Schattke, K., Dedic, H., Rosenfield, S., & Koestner, R. (2014). A self-determination theory approach to predicting school achievement over time: The unique role of intrinsic motivation. Contemporary Educational Psychology, 39(4), 342–358. https://doi.org/10.1016/j.cedpsych.2014.08.002
Trautwein, U., Lüdtke, O., Roberts, B. W., Schnyder, I., & Niggli, A. (2009). Different forces, same consequence: Conscientiousness and competence beliefs are independent predictors of academic effort and achievement. Journal of Personality and Social Psychology, 97(6), 1115–1128. https://doi.org/10.1037/a0017048
Van Beek, I., Kranenburg, I. C., Taris, T. W., & Schaufeli, W. B. (2013). BIS- and BAS-activation and study outcomes: A mediation study. Personality and Individual Differences, 55(5), 474-470. https://doi.org/10.1016/j.paid.2013.04.013
Vansteenkiste, M., Sierens, E., Soenens, B., Luyckx, K., & Lens, W. (2009). Motivational profiles from a self-determination perspective: The quality of motivation matters. Journal of Educational Psychology, 101(3), 671–688. https://doi.org/10.1037/a0015083
Wang, A., & Byrnes, J. P. (2013). Does the Opportunity – Propensity framework predict the early mathematics skills of low- income pre-kindergarten. Contemporary Educational Psychology, 38(3), 259–270. https://doi.org/10.1016/j.cedpsych.2013.04.004
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–70. https://doi.org/10.1037//0022-3514.54.6.1063