Formal Operational Performance: Epochal and Sociocultural Differences in the First Level of Secondary School Students in Argentina
Stella Maris Vázquez Marianela , Noriega-Biggio , Hilda Difabio-de-Anglat
The following research presents the outcomes of a cohort study investigating formal thinking skills among first and second-year secondary school stude.
- Pub. date: September 15, 2024
- Online Pub. date: September 11, 2024
- Pages: 109-127
- 109 Downloads
- 339 Views
- 0 Citations
The following research presents the outcomes of a cohort study investigating formal thinking skills among first and second-year secondary school students. A specially crafted instrument, the Logical Thought Performance Test for Adolescents (LTP-A), was employed to gauge the level of formal thought. The LTP-A assesses various aspects, including: combinatorial reasoning; proportional reasoning; permutation; inferences derived from exclusive and inclusive disjunction; biconditional and asymmetric implication; and, modus tollens. The study compares the achievements of four student groups from two educational institutions at two distinct time points, with a thirty-year gap. The independent variables include the sociocultural level and the epochal aspect. Methodologically, one-way analysis of variance and cluster analysis were performed, showing significant differences in relation to sociocultural level. Results suggest that the sociocultural factor outweighs epochal differences. Then, a content analysis of some answers was carried out to detect resolution strategies, some conceptual categories and types of errors. Conclusions explore the moderating role of students' sociocultural levels, and provide educational recommendations.
Keywords: Epochal differences, formal thought, secondary school students, sociocultural level.
0
References
Anaya García, C. E., Gómez Plata, M., & Paba Barbosa, C. (2019). Eficacia de un programa para el desarrollo del pensamiento formal en estudiantes de 9° de un colegio público del departamento del Magdalena [Effectiveness of a development of formal thinking program in ninth grade students of a public school at Magdalena (Col.)]. Psicogente, 22(42), 1-20. https://doi.org/10.17081/psico.22.42.3492
Arteaga Cezón, P., García de Tomás, J., Batanero, C., & Roa, R. (2017). Secondary school students’ resolution of permutation problems. In ICERI2017 Proceedings of the 10th annual International Conference of Education, Research and Innovation (pp. 2528-2533). IATED. https://doi.org//10.21125/iceri.2017.0718
Asiala, M., Brown, A., Kleiman, J., & Mathews, D. (1998). The development of students’ understanding of permutations and symmetries. International Journal of Computers for Mathematical Learning, 3, 13-43. https://doi.org/10.1023/A:1009738109343
Batanero, C., & Borovcnik, M. (2016). Statistics and probability in secondary school. Sense Publishers. https://doi.org/10.1007/978-94-6300-624-8
Bello, A. (2014). Students' acquisition of the formal reasoning ability in Kaduna State, Nigeria. The International Journal of Science, Mathematics and Technology Learning, 21(1), 1-12. https://doi.org/10.18848/2327-7971/CGP/v21i01/49044
Boujade, S. B., & Giuliano, F. J. (1994). Relationships between achievement and selective variables in a chemistry course for nonmajors. School Science and Mathematics, 94(6), 296-309. https://doi.org/10.1111/j.1949-8594.1994.tb15678.x
Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2020). Logical reasoning in formal and everyday reasoning tasks. International Journal of Science and Mathematics Education, 18, 1673-1694. https://doi.org/10.1007/s10763-019-10039-8
Cañizares, M. J., & Batanero, C. (1997). Influencia del razonamiento proporcional y de las creencias subjetivas en la comparación de probabilidades [Influence of proportional reasoning and subjective beliefs on the comparison of probabilities]. UNO, 14, 99-114. https://bit.ly/3SnpIzF
Chapman, M. (1988). Contextuality and directionality of cognitive development. Human Development, 31(2), 92-106. https://doi.org/10.1159/000275800
Dasen, P. R. (1994). Culture and cognitive development from a Piagetian perspective. In W. J. Lonner & R. S. Malpass (Eds.), Readings in psychology and culture (pp. 145-149). Allyn & Bacon.
English, L. D. (1993). Children's strategies for solving two– and three–dimensional combinatorial problems. Journal for Research in Mathematics Education, 24(3), 255-273. https://doi.org/10.5951/jresematheduc.24.3.0255
English, L. D. (2005). Combinatorics and the development of children's combinatorial reasoning. In G. A. Jones (Eds.), Exploring probability in school. Mathematics education library (vol. 40, pp. 121-141). Springer. https://doi.org/10.1007/0-387-24530-8_6
English, L. D. (2007). Children's strategies for solving two-and three-dimensional combinatorial problems. In G. Leder & H. Forgasz (Eds.), Stepping-stones for the 21st century: Australasian mathematics education research (pp. 139-158). Sense Publishers. https://doi.org/10.1163/9789087901509_009
Ennis, R. H. (1976). An alternative to Piaget's conceptualization of logical competence. Child Development, 47(4), 903-919. https://doi.org/10.2307/1128426
Escurra Mayaute, M., & Salas Blas, E. (2014). Construcción y validación del cuestionario de adicción a redes sociales (ARS) [Construction and validation of the Social Media Addiction Questionnaire (SMAQ)]. Liberabit. Revista Peruana de Psicología, 20(1), 73-91. https://bit.ly/3vpYJro
Feldman, D. H. (2012). Cognitive development in childhood: A contemporary perspective. In I. B. Weiner (Ed.), Handbook of psychology. Volume 6: Developmental psychology (2nd ed., pp. 195-210). John Wiley & Sons. https://doi.org/10.1002/9781118133880.hop206008
Fischer, K. W., & Granott, N. (1995). Beyond one-dimensional change: Parallel, concurrent, socially distributed processes in learning and development. Human Development, 38(6), 302-314. https://doi.org/10.1159/000278336
Franco de Camargo, D. A. (1990). Desempenho operatório e desempenho escolar [Operational performance and schooling performance]. Cadernos de Pesquisa, 74, 47-56. https://bit.ly/4bZbdJm
García-Madruga, J. A. (2019). La comprensión y el razonamiento en las conectivas proposicionales: Los condicionales solo si y a menos que [Understanding and reasoning in propositional connectives: The conditionals only if and unless]. Glosema. Revista Asturiana de Lingüística, 1, 83-106. https://doi.org/10.17811/glosema.1.2019.83-106
Guttman, L. L. (1974). The basis for scalogram analysis. In S. Stouffer, L. Guttman, E. A. Suchman, P. Lazarsfeld, S. A. Star & J. A. Clausen (Eds.), Measurement and prediction (pp. 60-90). Scaling. https://doi.org/10.4324/9781315128948-16
Hernández Suárez, C. A., Ramírez-Leal, P., & Rincón-Álvarez, G. A. (2013). Pensamiento matemático en estudiantes universitarios [Mathematical thinking in university students]. Eco Matemático, 4(1), 4-10. https://doi.org/10.22463/17948231.72
Johnson-Laird, P. N. (2006). How we reason. Oxford University Press.
Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Lawrence Erlbaum Associates, Inc.
Kaya, A. N., & Çıkış, S. (2017). Links between creative performance and post-formal thought. Creativity Theories – Research – Applications, 4(1), 116-136. https://doi.org/10.1515/ctra-2017-0006
Kuhn, D. (2008). Formal Operations from a twenty-first century perspective. Human Development, 51(1), 48-55. https://doi.org/10.1159/000113155
Lamanna, L., Gea, M. M., & Batanero, C. (2022). Do secondary school students’ strategies in solving permutation and combination problems change with instruction? Canadian Journal of Science, Mathematics, and Technology Education, 22, 602-616. https://doi.org/10.1007/s42330-022-00228-z
Larivée, S., & Normandeau, S. (1985). Maîtrise du schème de la combinatoire (permutations) chez des adolescents en classes spéciales [Mastery of the combinatorial scheme (permutations) in adolescents in special classes]. Canadian Journal of Education/Revue canadienne de l'éducation, 10(4), 345-361. https://doi.org/10.2307/1494837
Larivée, S., Normandeau, S., & Parent, S. (2000). The French connection: Some contributions of French-language research in the post-Piagetian era. Child Development, 71(4), 823-839. https://doi.org/10.1111/1467-8624.00188
Lawson, A. E. (1995). Science teaching and the development of thinking. Wadsworth Publishing Company.
Longeot, F. (1964). Analyse statistique de trois tests génétiques collectifs [Statistical analysis of three collective genetic tests]. BINOP. Bulletin de l'Institut national d'étude du travail et d'orientation professionnelle, 20(4), 219-237. https://doi.org/10.3406/binop.1964.2184
Longeot, F. (1968). La pédagogie des mathématiques et le développement des opérations formelles dans le second cycle de l'enseignement secondaire [The pedagogy of mathematics and the development of formal operations in upper secondary education]. Enfance, 21(5), 379-389. https://doi.org/10.3406/enfan.1968.2467
Lourenço, O., & Machado, A. (1996). In defense of Piaget's theory: A reply to 10 common criticisms. Psychological Review, 103(1), 143-164. https://doi.org/10.1037/0033-295X.103.1.143
Lourenço, O. M. (2016). Developmental stages, Piagetian stages in particular: A critical review. New Ideas in Psychology, 40, 123-137. https://doi.org/10.1016/j.newideapsych.2015.08.002
Martín, M., & Valiña, M. D. (2002). Razonamiento deductivo: Una aproximación al estudio de la disyunción. [Deductive reasoning: An approach to the study of disjunction]. Revista de Psicología General y Aplicada, 55(2), 225-248.
Martín, M., & Valiña, M. D. (2003). Dos décadas de investigación sobre el problema THOG: ¿una disyunción por resolver? [Two decades of research on the THOG problem: A disjunction to solve?]. Revista de Psicología General y Aplicada, 56(1), 21-43.
Mayer, R. E. (1983). Thinking, problem solving, cognition. Freeman and Company.
McLean, K. C., & Riggs, A. E. (2022). No age differences? No problem. Infant and Child Development, 31(1), e2261. https://doi.org/10.1002/icd.2261
Molina Lara, L. M., & Rada Arteaga, K. J. (2013). Relación entre el nivel de pensamiento formal y el rendimiento académico en matemáticas [Relationship between formal thinking level and academic performance in mathematics]. Zona Próxima, 19, 63-72. https://bit.ly/4dJkOpl
Navarro-Pelayo, V., Batanero, C., & Godino, J. D. (1996). Razonamiento combinatorio en alumnos de secundaria [Combinatorial reasoning in secondary school students]. Educación Matemática, 8(1), 26-39. https://doi.org/10.24844/EM0801.03
Nouri, A., Tokuhama-Espinosa, T. N., & Borja, C. (2022). Crossing mind, brain, and education boundaries. Cambridge Scholars Publishing.
Obando, G., Vasco, C. E., & Arboleda, L. C. (2014). Enseñanza y aprendizaje de la razón, la proporción y la proporcionalidad: Un estado del arte [Teaching and learning of reason, proportion and proportionality: A state of the art]. Revista Latinoamericana de Investigación en Matemática Educativa, 17(1), 59-81. https://doi.org/10.12802/relime.13.1713
Piaget, J. (1950). The psychology of intelligence. Routledge.
Piaget, J. (1977). Recherches sur l'abstraction réfléchissante [Research on reflecting abstraction]. Presses Universitaires de France.
Piaget, J. (1979). Tratado de lógica y conocimiento científico [Treatise on logic and scientific knowledge]. Paidós.
Piaget, J., & Beth, J. (1961). Relaciones entre la lógica formal y el pensamiento real [Relationships between formal logic and real thinking]. Ciudad Nueva.
Piaget, J., & Inhelder, B. (1951). La genèse de l’idée de hasard chez l'enfant [The genesis of the idea of chance in children]. Presses Universitaires de France.
Piaget, J., & Inhelder, B. (1985). De la lógica del niño a la lógica del adolescente [From the logic of the child to the logic of the adolescent]. Paidós.
Ramírez Leal, P., Hernández Suárez, C. A., & Prada Núñez, R. (2018). Elementos asociados al nivel de desarrollo del pensamiento lógico matemático en la formación inicial de docentes [Elements associated with the level of development of mathematical logical thinking in initial teacher education]. Revista Espacios, 39(49), 11-21. https://bit.ly/4cdHOLt
Roberge, J. J., & Flexer, B. K. (1979). Further examination of formal reasoning abilities. Child Development, 50(2), 478-484. https://doi.org/10.2307/1129426
Roberge, J. J., & Flexer, B. K. (1982). The Formal Operational Reasoning Test. The Journal of General Psychology, 106(1), 61-67. https://doi.org/10.1080/00221309.1982.9710973
Rohaeti, E. E., Putra, H. D., & Primandhika, R. B. (2019). Mathematical understanding and reasoning abilities related to cognitive stage of senior secondary school students. Journal of Physics: Conference Series, 1318, Article 012099. https://doi.org/10.1088/1742-6596/1318/1/012099
Scardamalia, M. (1977). Information processing capacity and the problem of horizontal décalage: A demonstration using combinatorial reasoning tasks. Child Development, 48(1), 28-37. https://doi.org/10.2307/1128877
Valiña, M. D., & Martín, M. (2021). Reasoning with the THOG Problem: A forty-year retrospective. Psychology, 12(12), 2042-2069. https://doi.org/10.4236/psych.2021.1212124
Vázquez, S. M., & Difabio de Anglat, H. (2009). Academic achievement and formal thought in engineering students. Electronic Journal of Research in Educational Psychology, 7(18), 653-672. https://doi.org/10.25115/ejrep.v7i18.1325
Vázquez, S. M., Rapetti, M. V., & Noriega, M. (2023). El Pensamiento lógico formal: Propuesta de un instrumento para su evaluación en sujetos del primer nivel de educación media [Formal logical thought: Proposal of an instrument for its evaluation in subjects of the first level of secondary education]. Revista de Psicología, 19(37), 23–36. https://doi.org/10.46553/rpsi.19.37.2023.p23-36
Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology, 20(3), 273-281. https://doi.org/10.1080/14640746808400161
Widodo, S. A., Istiqomah, Leonard, Nayazik, A., & Prahmana, R. C. I. (2019). Formal student thinking in mathematical problem solving. Journal of Physics: Conference Series. 1188, Article 012087. https://doi.org/10.1088/1742-6596/1188/1/012087